Abstract

Organic Rankine cycle (ORC) is a promising technology to recover low-grade heat, but it leads to a low efficiency due to the highest irreversible loss caused by the single-stage evaporation. The present work concerns the performance enhancement of a two-stage serial organic Rankine cycle (TSORC) for geothermal power generation. The heat source is divided into two separate temperature ranges. The main goal of the current simulation is to evaluate system performance of TSORC, as well as, to calculate the influence of two-stage evaporation on system performance. The ratio of the net power output to the total thermal conductance was chosen as the objective function. Results show that the system performance is coupled with geothermal water inlet temperature (GWIT), intermediate geothermal water temperature (IGWT), and evaporating temperatures. The two-stage evaporation significantly reduces the irreversible loss, thereby enhancing the net power output. The TSORC presents excellent systematic performances and deserves to be popularized in engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.