Abstract

This paper presents an optimization method for the civil aircraft environmental control system (ECS) mainly involving two airstreams: the ram airstream for cooling and the bleed airstream for supplying the cabin. The minimum total fuel energy consumption rate (FECR), defined as the weighted sum of the shaft power extraction and propulsive power loss, is obtained under the precondition of the constant outputs in the cooling capacity and outlet pressure. A modified genetic algorithm (GA) is proposed to acquire the optimal values of the heat transfer areas, temperature ratio of bleed air, mass flow rate of ram air, and pressure ratios of the turbine, compressor, and fan. The statistical results show that the multipoint crossover and continuity improvement implemented in the modified GA improve convergence and distribution performance. The probability of reaching a satisfactory result using modified GA is 62.4% higher than standard GA. Due to the decrease of inlet parameters of bleed air and the elimination of power input in the compressor, the FECR of the optimization case can be lowered by 11.0%. In general, the evaluation method considering energy quality together with the modified optimization technique is proved effective in energy-saving design for such energy systems such as ECS with multiple inputs and outputs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call