Abstract

The thermodynamic of cavitation bubble collapsing is a complex fundamental issue for cavitation application and prevention. The pseudopotential and thermal multi-relaxation-time lattice Boltzmann method (MRT-LBM) is adopted to investigate the thermodynamic of collapsing cavitation bubble in this paper. The simulation results satisfy the maximum temperature equation of the bubble collapse, which derived from the Rayleigh-Plesset (R-P) equation. The validity of thermal MRT-LBM in simulating the collapse process of cavitation bubble is verified. It shows that the temperature evolution of vapor-liquid phase is well captured. Furthermore, the two-dimensional (2D) temperature, velocity and pressure field of the bubble near a solid wall are analyzed. The maximum temperature inside the bubble and wall temperature under different position offset parameters are discussed in details.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call