Abstract

A family of chelating aryl-functionalized germylene ligands has been developed and employed in the synthesis of their corresponding 16-electron Ni0 complexes (PhiPDippGeAr·Ni·IPr; PhiPDipp = {[Ph2PCH2Si(iPr)2](Dipp)N}-; IPr = [{(H)CN(Dipp)}2C:]; Dipp = 2,6-iPr2C6H3). These complexes demonstrate the ability to cooperatively and reversibly activate dihydrogen at the germylene-nickel interface under mild conditions (1.5 atm H2, 298 K). We show that the thermodynamics of the dihydrogen activation process can be modulated by tuning the electronic nature of the germylene ligands, with an increase in the electron-withdrawing character displaying more exergonic ΔG298 values, as ascertained through NMR spectroscopic Van't Hoff analyses for all systems. This is also shown to correlate with experimental 31P NMR and UV/vis absorption data as well as with computationally derived parameters such as Ge-Ni bond order and Ni/Ge NPA charge, giving a thorough understanding of the modulating effect of ligand design on this reversible, cooperative bond activation reaction. Finally, the utility of this modulation was demonstrated in the catalytic dehydrocoupling of phenylsilane, whereby systems that disfavor dihydrogen activation are more efficient catalysts, aligning with H2-elimination being the rate-limiting step. A density functional theory analysis supports cooperative activation of the Si-H moiety in PhSiH3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call