Abstract
Fluctuation solution theory (FST) is employed to analyze results of molecular dynamics (MD) simulations of liquid mixtures. The objective is to generate parameters for macroscopic G E-models, here the modified Margules model. We present a strategy for choosing the number of parameters included in the G E-model. The selection is a trade off between precision in reproduction of the results from the FST analysis and standard deviation of parameters. Two different objective functions are investigated. One has been used previously [S. Christensen, G.H. Peters, F.Y. Hansen, J.P. O’Connell, J. Abildskov, Mol. Simul. 33 (4–5) (2007) 449–457.]. The new one has advantages for systems with data points at dilute conditions. Prediction of bubble point pressures using parameters from the two objective functions are compared with experimental data for the binary mixtures methyl acetate– n-pentane and methyl acetate–acetone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.