Abstract
We describe current approaches to thermodynamic modelling of liquids for the CALPHAD method, the use of available experimental methods and results in this type of modelling, and considerations in the use of atomic‐scale simulation methods to inform a CALPHAD approach. We begin with an overview of the formalism currently used in CALPHAD to describe the temperature dependence of the liquid Gibbs free energy and outline opportunities for improvement by reviewing the current physical understanding of the liquid. Brief descriptions of experimental methods for extracting high‐temperature data on liquids and the preparation of undercooled liquid samples are presented. Properties of a well‐determined substance, B2 O3, including the glass transition, are then discussed in detail to emphasize specific modelling requirements for the liquid. We then examine the two‐state model proposed for CALPHAD in detail and compare results with experiment and theory, where available. We further examine the contributions of atomic‐scale methods to the understanding of liquids and their potential for supplementing available data. We discuss molecular dynamics (MD) and Monte Carlo methods that employ atomic interactions from classical interatomic potentials, as well as contributions from ab initio MD. We conclude with a summary of our findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.