Abstract

The hydrocarbon generative potential of rocks was evaluated by modeling chemical interactions in the systems carbonate rock—seawater, silty sand rock—seawater, argillaceous rock—seawater, basalt—seawater, and granite—seawater at 25, 100, 200, and 300°C and over a pressure range from saturated vapor pressure to the platform thermal gradient. The term seawater is used here to describe the composition of marine solutions at the halite (SW2), epsomite (SW3), and sylvite (SW4) stages of evaporation. The hydrocarbon generative potential of rocks in these systems increases in the order clays > silty sands > carbonates > mafic rocks, while felsic rocks are nongenerative. It was shown that an increase in the rock—water mass ratio (R/W), which can be considered as a proxy for the duration (grade) of metamorphism, led to an increase in the reduction potential (logfH2) and hydrocarbon generative potential of rocks. At R/W → 1, logfH2 for carbonates, clays, and silty sands is equal to −2.74, −2.45, and −2.57 at 100°C; −1.2, −1.1, and −1.0 at 200°C; and −0.5, +0.3, and −1.2 at 300°C, which suggests that at higher temperatures (pressures) clays are more capable of reducing chemical elements in the water—rock system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.