Abstract

Assessment of literature data, experimental study and thermodynamic modeling of the Pb-As and Cu-Pb-As systems are presented. These chemical systems are of importance for metallic lead refining at 330-500 °C (603-773 K), and for separation of copper from lead in complex polymetallic processes at 1000-1150 °C (1273-1423 K). Few studies are available for the solubility of solid copper arsenide in lead at low temperature. At high temperature, significant discrepancies between available experimentally measured limits of two-liquid miscibility gap exist in the Cu-Pb-As system. Experimental investigation of the present study aimed to fill the gaps and resolve the discrepancies. It consists of equilibration, quenching and electron probe microanalysis. Thermodynamic modeling helped to analyze the results and provided a database of model parameters. Present study is a part of a larger research program aimed at characterization of phase equilibria, heat balance and distribution of elements during complex copper and lead smelting, refining and recycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.