Abstract

Based on an assessment of the phase equilibria and thermodynamic data in the literature, the thermodynamic modeling of the In?Sc and In?Y systems was carried out by means of the calculation of phase diagram (CALPHAD) method supported by first-principles calculations. The solution phases, i.e., liquid, (In), (?Sc), (?Sc), (?Y) and (?Y), were modeled with the substitutional regular solution model. Ten intermetallic compounds, including InSc3, InSc2, In4Sc5, InSc, In2Sc, In3Sc, InY2, InY, In5Y3, and In3Y were described as stoichiometric phases, while In3Y5 was modeled with a sublattice model with respect to its homogeneity range. The enthalpies of formation of the intermetallic compounds at 0 K were computed using firstprinciple calculations and were used as input for the thermodynamic optimization. A set of self-consistent thermodynamic parameters for both the In?Sc and In?Y systems were obtained and the calculated phase diagrams are in good agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.