Abstract

The aim of this research is to develop a mathematical model of a compression ignition engine using cylinder-by-cylinder model approach to predict the performances; indicated work, indicated torque, in-cylinder pressures and temperatures and heat release rates. The method used in the study is based on ideal diesel cycle and is modified by the numerical formulations which affect the performance of the engine. The model consists of a set of tuning parameters such as engine geometries, EGR fractions, boost pressures, injection timings, air/fuel ratio, etc. It is developed in Simulink environment to promote modularity. A single-zone combustion model is developed and implemented for the combustion process which accounts for ignition delay, heat release. Derivations from slider-crank mechanism are involved to compute the instantaneous volume, area and stroke at any given crank angle. The results of the simulation model have been validated with experimental results with a close match between them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.