Abstract

The total energies of Laves phases in the Cr–Nb and Zr–Cr systems have been calculated by the pseudo-potential VASP code with a full relaxation of all structural parameters. The special quasirandom structures (SQSs) have been constructed and their total energies have been calculated by the VASP code to predict the enthalpies of mixing for bcc and hcp solid solution phases. The phonon calculations for the C14 and C15 Laves phases have been performed to analyze the phase stability at elevated temperatures. The experimental study on the Zr–Cr system has been carried out at different temperatures to determine the phase boundaries. Based on these results, thermodynamic models of Cr–Nb and Zr–Cr with extension to the ternary Zr–Nb–Cr systems have been developed in this work by using the CALPHAD approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.