Abstract

The permeability of light gases in a series of different glassy polymers is analyzed through a thermodynamic‐based approach for solubility and diffusivity. The nonequilibrium thermodynamic model for glassy polymers describes the solubility of the different penetrants; diffusivity is given as the product of a mobility factor and a thermodynamic factor. The latter is predicted by the nonequilibrium lattice fluid thermodynamic model, while the mobility coefficient is determined using the experimental permeability data. For rather soluble penetrants (e.g., CO2), a plasticization factor is also accounted for, considering the mobility to depend exponentially on penetrant concentration, as often observed experimentally. The model is able to describe accurately the experimental behavior in a simple and effective way, considering only two adjustable parameters. The mobility coefficient is found to depend on the penetrant size (critical volume) and on the fractional free volume of the polymer matrix, following rather general and reasonable correlations. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2776–2788, 2015

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.