Abstract
We have extended an earlier thermodynamic treatment of light-trapping in lattice-textured solar cells to higher absorptances. This treatment is used to calculate the quantum efficiency spectra and short-circuit current densities JSC for thin-film silicon solar cells with ideal lattice textures. An optimal triangular lattice period of 900 nm yields a calculated JSC that is 2 mA/cm2 larger than for ideal random textures in a 1000 nm thick cell. We compare the calculations to recent experiments with periodically textured cells. While the experimental cells give JSC values that are comparable to the best cells with conventional textures, they do not show the features associated with the prediction of higher JSC. We discuss the role of imperfections in the periodic texturing, and suggest that cells used with solar tracking may realize the predicted JSC improvement.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.