Abstract

Thermal management is highly essential for the latest electronic devices to effectively dissipate heat in a densely packed environment. Usually, these high power devices are cooled by integrating micro scale cooling systems. Most of the works reported in the literature majorly concentrate on microchannel heat sink in which the characteristics of friction factor and enhancement of heat transfer are analyzed in detail. However, due to the advent of compact electronic devices a crucial investigation is required to facilitate an amicable environment for the neighboring components so as to improve the reliability of the electronic devices. Henceforth, in the present study a combined experimental and numerical analysis is performed to provide an insight to determine the performance of a copper microchannel integrated with aluminium block using TiO2 nanofluid for different particle configurations. Needless to say, the present study, which also focuses on entropy generation usually attributed to the thermodynamic irreversibility, is very much significant to design an optimum operating condition for better reliability and performance of the cooling devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.