Abstract

The objective of this investigation is examination of the dominant forces that govern complex formation between a series of monoclonal antibodies directed against O6-ethyl-2'-deoxyguanosine. These monoclonal antibodies (coded as ER-6, ER-3, and EM-1) provide the basis for a thermodynamic comparative evaluation of the potentially different forces that stabilize the various monoclonal antibody (mAb) alkylated nucleoside complexes. The binding affinities of ER-6, ER-3, and EM-1 are measured in terms of specific (O6-ethyl-2'-deoxyguanosine, or O6-EtdGuo) and nonspecific (O6-methyl-2'-deoxyguanosine, or O6-MedGuo) antigens, under a variety of experimental conditions, including pH, sodium chloride addition, 1-propanol addition, and temperature, via a nitrocellulose affinity filter assay. The binding isotherms were analyzed via a least-squares routine fit to a two independent binding sites model. The temperature dependence of the van't Hoff enthalpies for the specific O6-EtdGuo interaction ranges from -15.18 to -18.60 kcal mol-1, while for O6-MedGuo the range was extended from -2.72 to -20.66 kcal mol-1. The standard and unitary entropies were negative for those mAb interactions with O6-EtdGuo as well as for ER-6/O6-MedGuo complex formation. However, it was found that the interactions between ER-3 and EM-1 with O6-MedGuo led to decidedly positive entropic values. These results indicate two different dominant forces at work in complex stabilization. The interaction of the three mAb's with their specific antigen, as well as ER-6/O6-MedGuo interaction (nonspecific), may well be controlled by van der Waals type forces, while ER-3 and EM-1 interactions with nonspecific antigen imply formal charge neutralization electrostatics as the dominant force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.