Abstract

The equilibrium binding of a new water-soluble tetra-cationic porphyrin, 5-(1-(4-carboxybutyl)‎pyridinium-4-yl)10,15,20- tris (1-methylpyridinium-4-yl)‎porphyrin (5-CBPyP) with calf thymus DNA in comparison with meso-tetrakis(4- N -methyl‎pyridinium)porphyrin (TMPyP) has been studied in 7.5 mM phosphate buffer, pH=7.2; and at various temperatures by UV-Vis absorption, fluorescence spectroscopies and viscosity measurement. The thermodynamic parameters were calculated by van't Hoff equation at various temperatures. The values of -137.13±1.22 kJ/mol and -337.21±4.75 J/mol.K for 5-CBPyP and -159.12±1.22 kJ/mol and -406.11±4.45 J/mol.K for TMPyP, were estimated for enthalpy and entropy changes of interaction, respectively. The data indicate that the process is exothermic and enthalpy driven suggesting that electrostatic forces play a considerable role in the interaction process. The results of spectroscopic techniques and viscosity measurement represent the intercalation mode of binding for both porphyrins and higher binding affinity of TMPyP respect to 5-CBPyP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.