Abstract

A new approach based on the nonequilibrium statistical operator is presented that makes it possible to take into account the inhomogeneous particle distribution and provides obtaining all thermodynamic relations of self-gravitating systems. The equations corresponding to the extremum of the partition function completely reproduce the well-known equations of the general theory of relativity. Guided by the principle of Mach's "economing of thinking" quantitatively and qualitatively, is shown that the classical statistical description and the associated thermodynamic relations reproduce Einstein's gravitational equation. The article answers the question of how is it possible to substantiate the general relativistic equations in terms of the statistical methods for the description of the behavior of the system in the classical case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.