Abstract

Lithium is a popular lightweight material in the field of energy storage because of its hydrogen-binding properties and electrochemical advantages. The high hydrogen uptake capacity (∼12.6 wt%) of lithium hydride (LiH) is limited by the major thermodynamic constraint of requiring a higher temperature (∼700 °C) for desorption at 0.1 MPa. Incorporating a third element that creates Li phases during LiH dehydrogenation can help overcome thermodynamic constraints. This study involves modifying the hydrogen storage properties and thermodynamic characteristics of LiH through mechanical alloying with porous silicon (PS). Pressure composition isotherms measure the reversible hydrogen storage capacity (∼3.39 wt%) of LiH-PS alloy at different temperatures. The energy of hydrogen interaction is quantified by isosteric heat of absorption, which provides the enthalpy change in the reaction system. Hydrogen absorption and desorption enthalpies of 94.5 kJ (mol H2)−1 and 114.9 kJ (mol H2)−1 demonstrate the lowest energy demand among previously reported LiH alloys. The energy of hydrogen interaction is quantified by isosteric heat of absorption, which provides the enthalpy change in the reaction system. The hydride decomposition of the alloy indicates the possible range of hydrogen desorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call