Abstract

It was shown that with the combination of three Liouville-type dilaton potentials, one can derive dilaton black holes in the background of anti-de-Sitter (AdS) spaces. In this paper, we further extend the study on the dilaton AdS black holes by investigating their thermodynamic instability through a geometry approach. First, we review thermodynamic quantities of the solutions and check the validity of the first law of thermodynamics. Then, we investigate phase transitions and stability of the solutions. In particular, we disclose the effects of the dilaton field on the stability of the black holes. We also employ the geometrical approach toward thermodynamical behavior of the system and find that the divergencies in the Ricci scalar coincide with roots and divergencies in the heat capacity. We find that the behavior of the Ricci scalar around divergence points depends on the type of the phase transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.