Abstract

The relationship between thermodynamics and the Lloyd bound on the holographic complexity for a black hole has been of interest. We consider $D$ dimensional anti-de Sitter black holes with hyperbolic geometry as well as black holes with momentum relaxation that have a minimum for temperature and mass. We show that the singular points of the thermodynamic curvature of the black holes, as thermodynamic systems, correspond to the zero points of the action and volume complexity at the Lloyd bound. For such black holes with a single horizon, the complexity of volume and the complexity of action at minimum mass and minimum temperature are zero, respectively. We show that the thermodynamic curvature diverges at these minimal values. Because of the behaviour of action complexity and thermodynamic curvature at minimum temperature, we propose the action complexity as an order parameter of the black holes as thermodynamic systems. Also, we derive the critical exponent related to the thermodynamic curvature in different dimensions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call