Abstract

Despite more than a quarter century of research, the nature of the second-order phase transition in the heavy-fermion metal URu2Si2 remains enigmatic. The key question is which symmetry is being broken below this “hidden order” transition. We review the recent progress on this issue, particularly focusing on the thermodynamic evidence from very sensitive micro-cantilever magnetic torque measurements that the fourfold rotational symmetry of the underlying tetragonal crystal is broken. The angle dependence of the torque under in-plane field rotation exhibits the twofold oscillation term, which sets in just below the transition temperature. This observation restricts the symmetry of the hidden order parameter to the E+- or E−-type, depending on whether the time reversal symmetry is preserved or not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.