Abstract

Cemented carbides consist of hard carbide particles of hexagonal WC and often also of cubic carbides cemented together in a binder consisting of mainly cobalt (Co). A thermodynamic evaluation of the cubic carbide formers hafnium (Hf) and zirconium (Zr) in cemented carbides has been done. Both thermodynamic evaluations of lower-order systems and experimental investigations have been performed. The new experimental information was necessary for a satisfactory thermodynamic description because there is a lack of earlier experiments of this alloy system. The assessment work with the C-Co-W-Hf-Zr system has resulted in a satisfactory description of the thermodynamic properties compared with the experimental values. This work has been done by combining a new assessment of the CoHf and CoZr systems with already assessed investigations of the Hf-C and Zr-C systems. New experimental information in higher-order systems has been used to improve the thermodynamic descriptions and to verify the reliability of the assessments. The main results of the experimental work are measurements of the composition of the cubic carbide in selected equilibria; measurements of the temperatures of the L+fcc+WC+graphite and L+fcc+WC+M6C equilibria in the C-Co-Hf, C-Co-Zr, and C-Co-W-X (X=Hf and Zr) systems; and measurements of the solubility of Hf and Zr in liquid cobalt. Detailed comparisons between calculated and experimental data are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.