Abstract

It has been established recently that there is an interesting thermodynamic “equivalence” between noninteracting Bose and spinless Fermi gases in two dimensions, and between one-dimensional Bose and Fermi systems with linear dispersion, both in the grand-canonical ensemble. These are known to be special cases of a larger class of equivalences of noninteracting systems having an energy-independent single-particle density of states (DOS). Furthermore, the thermodynamic equivalence has also been established for any noninteracting quantum gas with a discrete ladder-type spectrum in the canonical ensemble. Here we investigate the intriguing possibility that the equivalence for systems with a constant DOS is a special case of a more general equivalence between noninteracting Bose and Fermi gases with a discrete ladder-type spectrum in the grand-canonical ensemble, which reduces to the constant-DOS case when the level-spacing approaches zero. By direct numerical calculation of the Bose and Fermi grand-canonical free energies, we conclude that the grand-canonical equivalence does not apply to the ladder-spectrum case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.