Abstract

Heat recovery boosting applications, especially polygeneration, provide an efficacious effort toward sustainable energy supply, air pollution control, and financial saving. Among new technologies, solid oxide fuel cells are able to effectively operate benefiting from high-temperature syngas output to boost the applicability of combined cycles. Respecting this manner and embracing a renewable energy resource, i.e., biomass fuel, a biomass Gasifier-Solid oxide fuel cell is devised in this paper; its waste heat is recovered by a doable-flash binary geothermal power plant for better operation. Accordingly, a thermal-based desalination, namely humidification dehumidification desalination, and a domestic water heater are joint to the geothermal cycle resulting in a novel trigeneration application. The possibility is measured by thermodynamic, environmental and exergoeconomic tools; a comprehensive sensitivity analysis is applied together with a multi-objective grey wolf optimization in three different optimization scenarios. Considering eight decision variables for the sensitivity analysis and optimization, the optimization scenarios comprise exergetic efficiency/sum unit cost of products, exergetic efficiency/levelized total emission, and exergetic efficiency/hot water production. Here, the last scenario possesses the best optimum exergetic efficiency of 64.49%; the optimum sum unit cost of product, levelized total emission, and heating production are forecasted at 4.94 $/GJ, 0.124 ton/MWh, and 6549.77 kW, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call