Abstract

In the present study, the thermodynamic, environmental, and economic analyses are conducted on photovoltaic/thermal (PV/T) and photovoltaic/thermal-thermoelectric generator (PV/T-TEG) systems. The water, single particle Al2O3 and hybrid Al2O3/Cu nanofluids with spherical (Sp) and oblate spheroid (OS) shaped nanoparticles are considered as heat transfer fluids in both systems. A transient three-dimensional coupled numerical model is developed to investigate the behavior of PV/T and PV/T-TEG systems under the temperature oceanic ambient conditions of Calicut, India. The results reveal that the PV/T-TEG system shows superior performance compared to PV/T system. The energy, exergy, environmental and economic performances are superior for Al2O3/Cu nanofluid followed by Al2O3 nanofluid and water in decreasing order and those are superior for OS shaped nanoparticles compared to Sp shaped nanoparticles for both systems. The PV/T-TEG system with Al2O3/Cu-OS nanofluid is evaluated as the best configuration with total electrical power, thermal power, electrical and thermal energy efficiencies, electrical and thermal exergy efficiencies, net CO2 mitigation, carbon credit, SOx, NOx and PM emission reductions, levelized cost of energy (LCOE), energy payback time and profit of 215.73 W, 170.30 W, 23.89%, 24.86%, 25.19%, 0.305%, 42.53 tons, 1056.90 $, 825.69 kg, 413.23 kg, 86.04 kg, 0.04945 $/kWh, 2.57 years and 15719.07 $, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.