Abstract
Thermodynamic phase equilibria in synthetic slags (Al2O3–CaO–FeO–SiO2–V2O3) were investigated with 0–27wt.% vanadium oxide corresponding to industrial coal–petroleum coke (petcoke) feedstock blends in a simulated gasifier environment. Samples encompassing coal–petcoke mixed slag compositions were equilibrated at 1500°C in a 64vol.% CO/36vol.% CO2 atmosphere (Po2≈10−8atm at 1500°C) for 72h, followed by rapid water quench, then analyzed by inductively coupled plasma optical emission spectrometry, X-ray diffractometry, and scanning electron microscopy with wavelength dispersive spectroscopy. With increasing CaO content, FeO content, or both; the slag homogeneity region expanded and a composition range exhibiting crystals was reduced. The mullite (Al6Si2O13) crystalline phase was not present in the slags above 9wt.% FeO while the karelianite (V2O3) crystalline phase was always present in compositions studied if a sufficient amount of vanadium existed in the slag. Based on the present experimental equilibrium evaluation, a set of isothermal phase diagrams showing effects of CaO and FeO on thermodynamic phase stabilities in the vanadium-bearing slags is proposed. Some uses of the diagrams for potential industrial practice are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.