Abstract

By measuring the refractivity and the temperature of a gas, its pressure can be assessed from fundamental principles. The highest performing instruments are based on Fabry–Perot cavities (FPC). Gas modulation refractometry (GAMOR) is a methodology that has the ability to reduce the influence of disturbances to such an extent that high-precision (sub-parts-per-million) assessments of pressure can be made by the use of FPCs of Invar. To allow for high accuracy assessments, it is of importance to assess the uncertainty contribution from the thermodynamic effects that are associated with the gas filling and emptying of the cavity (pV-work). This paper presents a detailed scrutiny of the influence of the gas exchange process on the assessment of gas temperature on an Invar-based dual-FPC (DFPC) instrumentation. It is shown that by virtue of a combination of a number of carefully selected design entities (a small cavity volume with a bore radius of 3 mm, a spacer material with high heat capacitance, large thermal conductivity, and no regions that are connected with low thermal conductance, i.e. no heat islands, and a continuous assessment of temperature of the cavity spacer) the system is not significantly affected by pV-work. Simulations show that 10 s after the filling all temperature gradients in the system are well into the sub-mK range. Experiments support that refractivity assessments initiated after 40 s are not significantly affected by the pV-work. The analysis given in this work indicates that an upper limit for the influence of pV-work on the Invar-based DFPC system using 100 s long gas modulation cycles is 0.5 mK/100 kPa (or 1.8 ppm/100 kPa). Consequently, thermodynamic effects will not be a limiting factor when the Invar-based DFPC GAMOR system is used for assessments of pressure or as a primary pressure standard up to atmospheric pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.