Abstract

The Atlantic Multidecadal Oscillation (AMO) has garnered attention for its important role in shaping surface air temperature (SAT) patterns over Eurasia. While Eurasian winter SAT was traditionally attributed to changes in large-scale atmospheric circulations associated with the AMO, a careful examination of the latest unforced CMIP6 simulations in this study unveils a significant contribution of the AMO’s thermodynamic effects. Specifically, the heat released from the North Atlantic Ocean and transported to northern Eurasia through westerlies takes precedence over the effect of dynamic Rossby waves, resulting in warm (cold) phases during positive (negative) AMO cycles, along with increased (decreased) warm extremes and reduced (enhanced) cold extremes. This study contributes to an improved understanding of the dominating mechanism of the AMO’s impact on Eurasian SAT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.