Abstract

Nanoparticles are the bridge between the molecular and the macroscopic worlds. The growing number of commercial applications for nanoparticles spans from consumer products to new frontiers of medicine and next-generation optoelectronic technology. They are most commonly deployed in the form of a colloid, or "ink", which are formulated with solvents, surfactants, and electrolytes to kinetically prevent the solid particulate phase from reaching the thermodynamically favored state of separate solid and liquid phases. In this work, we theoretically determine the thermodynamic requirements for forming a single-phase solution of spherical particles and engineer a model system to experimentally demonstrate the spontaneous formation of solutions composed of only solvent and bare inorganic nanoparticles. We show molecular interactions at the nanoparticle interface are the driving force in high-concentration nanoparticle solutions. The work establishes a regime where inorganic nanoparticles behave as molecular solutes as opposed to kinetically stable colloids, which has far-reaching implications for the future design and deployment of nanomaterial technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.