Abstract

Intrinsically disordered (ID) sequence segments are abundant in cell signaling proteins and transcription factors. Because ID regions commonly fold as part of their intracellular function, it is crucial to understand the folded states as well as the transitions between the unfolded and folded states. Specifically, it is important to determine 1) whether large ID segments contain different thermodynamically and/or functionally distinct regions, 2) whether any ID regions fold upon activation, 3) the degree of coupling between the different ID regions, and 4) whether the stability of ID domains is a determinant of function. In this study, we thermodynamically characterized the full-length ID N-terminal domain (NTD) of human glucocorticoid receptor (GR) and two of its naturally occurring translational isoforms. The protective osmolyte trimethylamine N-oxide (TMAO) was used to induce folding transitions. Each of the three NTD isoforms was found to undergo a cooperative folding transition that is thermodynamically indistinguishable (based on m-values) from that of a globular protein of similar size. The extrapolated stabilities for the NTD isoforms showed clear correlation with the known activities of their corresponding GR translational isoforms. The data reveal that the full-length NTD can be viewed as having at least two thermodynamically coupled regions, a functional region, which is indispensable for GR transcriptional activity, and a regulatory region, the length of which serves to regulate the stability of NTD and thus the activity of GR. These results suggest a new functional paradigm whereby steroid hormone receptors in particular and ID proteins in general can have multiple functionally distinct ID regions that interact and modulate the stability of important functional sites.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.