Abstract

Thermodynamic assessment of the Mg–Eu binary system has been carried out by combining first-principles calculations and Miedema’s theory with CALPHAD method. Firstly, the mixing enthalpy of the liquid alloys was calculated by using Miedema’s theory, and formation enthalpies of the intermetallic compounds were calculated by using the projector augmented-wave (PAW) method within the generalized gradient approximation (GGA). Subsequently, the liquid phase was described employing a simple substitutional model, of which the excess Gibbs energy was formulated with a Redlich-Kister expression. And the solubility of Eu in HCP_(Mg) and Mg in BCC_(Eu) were neglected. While the intermetallic compounds Mg 17Eu 2, Mg 5Eu, Mg 4Eu, Mg 2Eu and MgEu, were treated as stoichiometric compounds. Consequently, a set of self-consistent thermodynamic parameters for all stable phases in the Mg–Eu binary system were obtained, which can reproduce most of the thermodynamic and phase boundary data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call