Abstract

Computational thermodynamic approach based on the CALPHAD method has played a key role in materials science and engineering for these several decades as a bridge between experimental observations and theoretical prediction of phase equilibria. Within the same time frame, first-principles calculation based on the electron theory has progressed extensively and has interacted with the CALPHAD method. In this paper, we overview our recent research results on the calculation of thermodynamic properties such as enthalpy of formation for binary and ternary alloys at finite temperatures using electron theory as well as lattice vibration and cluster expansion method.Some examples of integrating those theoretical values comparable with experimental uncertainties and the CALPHAD methodology for construction of thermodynamic databases are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.