Abstract

MnCr2O4, known for its unique structure and properties, finds wide applications in catalysts, magnetic materials, electrode materials, and other fields. In this study, high-purity MnCr2O4 samples were synthesized via the liquid-phase combustion method and characterized. Thermodynamic data within the temperature range of 350–1350 K was predicted using NKR, and experimental thermodynamic data within the temperature ranges of 15–300 K and 623–1273 K were determined using a PPMS and drop calorimeter. Based on this data, the heat capacity as a function of temperature for MnCr2O4 was calculated: Cp=161.0157+0.01864T−1589402.7435T−2(J/mol·K)(623∼1273K), along with the enthalpy change, entropy change, and Gibbs energy change in the temperature range of 300∼1250 K. Thermodynamic analysis of the synthesis of MnCr2O4 in the field of materials and its treatment in metallurgy using experimental and computational results. This study addresses the thermodynamic knowledge gaps of MnCr2O4 and provides a valuable reference for its application in production practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.