Abstract

An important tool for understanding the effects of interactions in harmonically trapped atomic gases is the examination of their collective modes. One such mode is the breathing or monopole mode, which is special as it is constrained to occur at twice the harmonic trapping frequency when the interactions are scale invariant. When the interactions are not scale invariant, the frequency of the breathing mode will deviate from twice the trap frequency. The deviation itself depends on the thermodynamic contacts, which describe how the energy changes with the interactions. In this work I examine how the thermodynamic contacts and the breathing mode frequency of a spin-polarized one-dimensional (1D) p-wave Fermi gas depend on the 1D scattering volume, $\ell$, and the effective range, $r$, in the high temperature limit. Such dynamics can be studied in experiments and provide a tool for understanding how the dynamics depend on interactions with a finite effective range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.