Abstract

Thermodynamic consistency of pseudopotential lattice Boltzmann models is a major topic that needs comprehensive evaluations. When interface is flat, pseudopotential models can give density-pressure isotherms in excellent agreement with those from equation of state. When interface is curved, thermodynamic equilibriums are affected by interface curvature, and consistency of pseudopotential models has not been systematically evaluated. In this study, we show that the effect of Laplace pressure on phase equilibrium is quantitatively consistent with Kelvin equation at high reduced temperatures (≥0.7). At low temperatures, inconsistency that can be attributed to the effect of orientation of the interface was noted, and it can be improved by tuning of the pseudopotential. By relating interfacial tension of a simulated fluid to that of a real fluid, the lattice spacing of pseudopotential model is found to be on the order of several molecular diameters, the typical range of intermolecular interactions. Interfacial thickness at different temperatures in pseudopotential model compared well with experiments and molecular dynamics simulations, which confirms that the calculated length scale is reasonable. Evaluation of a free energy lattice Boltzmann model indicate that it is consistent with Kelvin equation at high temperatures. The free energy model, however, is not as accurate as the tested pseudopotential model, and discrepancies may come from the relative inaccuracies in the predictions of vapor densities and the thinner interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call