Abstract

Electrochemical atomic layer etching (e-ALE) is a unique approach for etching metals one atomic layer at a time. If practiced under optimal conditions, e-ALE ensures minimal evolution of surface roughness due to the atomic layer-by-layer etching characteristics. During e-ALE of copper (Cu), the crucial first step is the formation of a cuprous sulfide (Cu2S) monolayer via the surface-limited sulfidization reaction. In this paper, we investigate the surface coverage of this sulfide layer as a function of the sulfidization potential, and show that the equilibrium coverage attained can be modeled using the Frumkin adsorption isotherm. At a potential of –0.74 V vs SHE, sulfidization provides near-complete monolayer coverage of Cu by Cu2S, which then facilitates e-ALE in a layer-by-layer etching mode thereby maintaining a smooth post-etch surface. Operation at potentials negative with respect to –0.74 V provides sub-monolayer coverage, which manifests in roughness amplification during etching. This work provides a thermodynamics-guided foundation for the selection of operating conditions during Cu e-ALE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.