Abstract

WW domains are the smallest naturally independent beta-sheet protein structures available to date and constitute attractive model systems for investigating the determinants of beta-sheet folding and stability. Nonetheless, their small size and low cooperativity pose a difficult challenge for a quantitative analysis of the folding equilibrium. We describe here a comprehensive thermodynamic characterization of the conformational equilibrium of the fourth WW domain from the human ubiquitin ligase Nedd4 (hNedd4-WW4) using a combination of calorimetric and spectroscopic techniques with several denaturing agents (temperature, pH, and chemical denaturants). Our results reveal that even though the experimental data can be described in terms of a two-state equilibrium, spectral data together with anomalous values for some thermodynamic parameters (a strikingly low temperature of maximum stability, a higher than expected native-state heat capacity, and a small specific enthalpy of unfolding) could be indicative of more complex types of equilibria, such as one-state downhill folding or alternative native conformations. Moreover, double-perturbation experiments reveal some features that, in spite of the apparent linear correlation between the thermodynamic parameters, seem to be indicative of a complex conformational equilibrium in the presence of urea. In summary, the data presented here point toward the existence of a low-energy barrier between the different macrostates of hNedd4-WW4, placing it at the frontier of cooperative folding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.