Abstract

Methylcellulose (MC) is a thermo-reversible physical hydrogel. This study investigates the thermodynamic characteristics of gelation mechanism for MC. The relative and absolute specific heat capacity values of the hydrogel system were modeled using an empirical formulation to facilitate calculation of thermodynamic parameters. Experiments verifying the assumptions for the model formulation were conducted and are discussed. Parameters such as enthalpy, entropy, and changes in their magnitude as a function of temperature were calculated and their trends were studied. The implications of these observations on the various stages of the gel formation process and the associated mechanisms are evaluated. The studies revealed that the gelation of MC is a temperature-driven process rather than only driven by the heat input, and it attains a state of equilibrium under isothermal conditions. During gelation, the entropy of the overall (MC+water) system increases due to an increase in the disorderliness of the MC system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.