Abstract

The model of spherical molecular aggregate of nonionic surfactant is proposed. This model allows for the maximal (in accordance with packing rules) penetration of water molecules into an aggregate and is an alternative to the droplet model of molecular aggregate. Necessary conditions for the applicability of a model named quasi-droplet model are formulated. Based on this model, the dependence of the work of molecular aggregate formation on the aggregation number and surfactant monomer concentration in solution that plays the key role for the theory of micellization is studied. The equation is derived for the coordinates of maximum and minimum of aggregate formation work on the aggregation number axis arising with an increase in the concentration of micellar solution. Model calculations of the thermodynamic characteristics of the kinetics of micellization are performed. The approximation of the work of molecular aggregate formation allowing for the analytical study is constructed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.