Abstract
A series of vinyl polymers with L-valine and L-leucine residues, and related copolymers with N-isopropylacrylamide, were studied in aqueous solution at different temperatures (25, 30 and 35°C) and at two ionic strengths (0.01 M and 0.1 M NaCl). The protonation behavior revealed great differences between the polymers that were attributed to the size of the hydrophobic lateral group. Macromolecular shrinkage, occurring above a critical degree of protonation β, was related to hydrophobic forces outweighing the electrostatic repulsions between COO – groups. Low salt concentrations increased the electrostatic potential while high temperatures increased the hydrophobic interaction at lower β. The release of fewer water molecules structured around the polymer chain, responsible for the lower critical solution temperature phenomenon, revealed lower entropy changes at higher temperatures. The reversible configuration of graft polymer chains instantly responded to changes in pH and temperature, modifying the water filtration rates through the pores of cellulose membranes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.