Abstract
Knudsen effusion mass spectrometry measurements on neptunium dioxide are reported in this work, which have allowed to improve the understanding of its vapourization behaviour and solved discrepancies noticed in the literature: the enthalpy of formation of NpO2(g) has been re-assessed and the composition of neptunia at congruent vapourization has been determined at 2262K. In addition, a thermodynamic model for the neptunium-oxygen system has been developed using the CALPHAD method. The non stoichiometric NpO2−x phase is described herein using the compound energy formalism with ionic constituents (Np3+,Np4+)1(O2-,Va)2, while the liquid phase is represented with the ionic two-sublattice model (Np4+)P(O2-,VaQ-,O)Q. The reliability and consistency of all optimized Gibbs energies have been verified by calculating the phase equilibria, thermodynamic data, oxygen chemical potential and equilibrium partial pressures. Finally, a number of ill-defined data in the Np–O system have been identified after critical review of the literature and comparison with the present experimental results and CALPHAD model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.