Abstract

The thermodynamic properties of cesium oxides were calculated by combining ab initio calculations at 0K and a quasi-harmonic statistical thermodynamic model to determine the temperature dependency of the thermodynamic properties. In a second approach, the CALPHAD method was used to derive a model describing the Gibbs energy for all the cesium oxide compounds and the liquid phase of the cesium–oxygen system. For this approach, available experimental data in the literature was reviewed and it was concluded that only experimental thermodynamic data for Cs2O are reliable. All these data together with the thermodynamic data calculated by combining ab initio and the statistical model were used to assess the Gibbs energy of all the phases of the cesium–oxygen system. A consistent thermodynamic model was obtained. The variation of the relative stability of the different oxides is discussed using structural and bond data for the oxides investigated by ab initio calculations. This work suggests that the melting point for Cs2O2 reported in the literature (863K) is probably overestimated and should be re-measured.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.