Abstract

The substitution of Ag for Cu in CuInxGa1−xSe2-based photovoltaic absorber layers can be used to adjust the bandgap energy to better optimize the overall cell efficiency. Based on available thermochemical, equilibrium, and structural data, the Ag-Se system has been assessed and modeled. Given the order-disorder structure transition Ag2Se, the 2- and 3-sublattice models were used to represent the low- and high-temperature phases of the intermetallic compound respectively. Density functional theory based first-principles calculations were used to calculate the Gibbs energy of formation of the end-member compounds. A set of modeling parameters was obtained by the CALculation of PHAse Diagram approach and reasonable agreement was obtained between the experimental thermodynamic properties of the stable phases and the phase relationships in the Ag-Se system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call