Abstract

The phase equilibria of the La–Fe–Si system were investigated using a combination of experimental and thermodynamic modeling methods. The isothermal cross-section of the La–Fe–Si ternary system in the (Fe, Si)-rich region at 1373 K was experimentally investigated using electron probe microanalysis (EPMA) and X-ray diffraction (XRD). Based on the experimental results and literature reports of the La–Fe–Si system, the thermodynamic model parameters of the system were optimized using the CALPHAD method. The intermediate compounds in the La–Si binary system and ternary compounds in the La–Fe–Si ternary system were described via sublattice models. The calculated thermodynamic and phase equilibria data were in good agreement with the experimental data, providing a foundation for the development of a multi-component thermodynamic database for LaFeSi-based alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call