Abstract

In this research, a new ammonia-water mixture CCHP system driven by a LTHS is proposed which is a modified version of a Kalina cycle. Feasibility investigation of the recommended system is studied based on thermodynamic and thermoeconomic balance equations for performance assessment of thermal systems. the energy efficiency, exergy efficiency, and overall unit product cost are computed 49.83%, 27.68%, and 198.3 $/GJ, respectively. Also, condenser 2 is characterized as the main contributor to irreversibility of the recommended trigeneration system by exergy destruction ratio of 32.03%. Moreover, a thorough sensitivity study is carried out to attain higher energy efficiency by raising the evaporation temperature and basic NH3 concentration or by reducing the separators pressure, heating unit temperature, and terminal temperature difference (TTD) of vapour generator. From exergy perspective, it is figured out that higher exergy efficiency may be achieved by raising the separator 1 pressure, and TTD of vapour generator or by reducing the separator 2 pressure, evaporation temperature, heating unit temperature, and basic NH3 concentration. Also, it is proven that the overall cost of the cycle can be peaked with evaporation temperature, while can be maximized with separator 1 pressure and basic ammonia concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.