Abstract

A unique direct thermal oil vaporization solar power system employing cascade organic-steam Rankine cycle is proposed. The oil is a mixture of biphenyl and diphenyl oxide, and it is used for heat transfer, storage and power cycle fluid in the novel system. Stable electricity output and prolonged storage capacity can be facilitated. In the rated mode, the oil is vaporized at 390 °C in the collectors and drives a top turbine. The exhaust heat is used for preheating and evaporating water of the bottom cycle. Meanwhile, the hot oil in a high-temperature tank (HTT) superheats and reheats the generated steam. When the irradiation is insufficient, the heat released by the oil from the HTT to a low-temperature tank drives the bottom cycle. Fundamentals, thermodynamic performance and techno-economic feasibility are elaborated. The results indicate that, compared with the mainstream dual-tank solar power systems, the proposed system has a higher thermal efficiency with a lower water evaporation temperature (42.90% at 260 °C vs. 38.06% at 310 °C) and a larger temperature drop between the two tanks (121 °C vs. 100 °C). The equivalent payback time with respect to the top oil cycle is less than 3 years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call