Abstract

We present exact numerical results for the effects of thermal fluctuations on the experimentally relevant thermodynamic and spectral properties of Peierls chains. To this end, a combination of classical Monte Carlo sampling and exact diagonalization is used to study adiabatic half-filled Holstein and Su-Schrieffer-Heeger models. The classical nature of the lattice displacements in combination with parallel tempering permit simulations on large system sizes and a direct calculation of spectral functions in the frequency domain. Most notably, the long-range order and the associated Peierls gap give rise to a distinct low-temperature peak in the specific heat. The closing of the gap and suppression of order by thermal fluctuations involves in-gap excitations in the form of soliton-antisoliton pairs, and is also reflected in the dynamic density and bond structure factors as well as in the optical conductivity. We compare our data to the widely used mean-field approximation, and highlight relations to symmetry-protected topological phases and disorder problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.