Abstract
This investigation delves into the potential of Octa-nitro Quadricyclane (ONQC), a nitro-substituted quadricyclane, as a next-generation energetic material. Employing a robust B3LYP-gCP-D3/6-31G(d) computational approach, the study evaluates key material properties of ONQC, including strain energy (700.2 kJ/mol), enthalpy of formation (668.6 kJ/mol), and density (2.08 g/cm³). These enhanced properties result in predicted increases of 124 % in detonation pressure and 49.5 % in detonation velocity compared to TNT, significantly surpassing the performance of conventional high-energy density materials. Additionally, ONQC's suitability as an energetic additive in bipropellant formulations was evaluated with NASA's Chemical Equilibrium with Applications (CEA) software. The primary focus was on bipropellant formulations employing kerosene-based fuels (RP-1, JP-10, JP-5, etc.) and liquid oxygen (LOX) as the oxidizer. Incorporating ONQC into propellant formulations provides substantial improvements in specific impulse and reduces oxidizer requirements. This makes ONQC a promising candidate for advancing propulsion technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.