Abstract

AbstractThe precisely controllable self‐assembly phenomenon of block copolymers (BCPs) has garnered much attention because it yields well‐defined periodic nanostructures with a periodicity of 5–50 nm. However, from both thermodynamic and kinetic viewpoints, it still remains a challenge to develop a BCP material that can provide sub‐10 nm resolution, high pattern quality, fast pattern formation, and sufficient etch selectivity. To address these challenges, this study reports a BCP system containing a random‐copolymerized block (poly(2‐vinylpyridine‐co‐4‐vinylpyridne)‐b‐poly(dimethylsiloxane) (P(2VP‐co‐4VP)‐b‐PDMS)) that can provide sub‐6 nm resolution, 3σ line edge roughness of 0.89 nm, sub‐1‐min assembly time, and a high etch selectivity over 10. Calculation of the Flory–Huggins interaction parameter (χ) based on Leibler's mean‐field theory and small‐angle X‐ray scattering measurement data confirms the gradual tunability of χ with the controlled addition of 4VP fraction in the P(2VP‐co‐4VP) block. While guaranteeing kinetically fast self‐assembly within one minute using microwave annealing, the best pattern quality resulting from the thermodynamic suppression of line edge fluctuation is achieved with a 4VP weight fraction of 33% in the random‐copolymerized block. This approach enables systematical control of sub‐6 nm scale BCP self‐assembly and will provide a practical patterning solution for diverse nanostructures and devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.