Abstract

Lithium-titanate-oxide (LTO) based lithium-ion batteries show promise for longer lifespan, higher power capability, and lower life cycle cost for energy storage and electric transportation applications than graphite-based counterparts. However, the degradation mechanisms of LTO-based cells in the high and low state-of-charge (SOC) intervals and different discharge cut-off voltages are not clearly investigated. In this study, the application-related lifetime performance of high-power Li4Ti5O12/LiCoO2 batteries is investigated at five independent SOC intervals with 20 % depth-of-discharge (DOD) and three discharge cut-off voltages. Our results show that degradation increases significantly when the batteries are cycled within lower SOC intervals or with lower cut-off voltages. Additionally, thermodynamic degradation is more significant when cycled at 20 % DOD, while kinetic degradation dominates at 100 % DOD. For thermodynamic degradation, the determining degradation mode is shown to be the loss of active material in the negative electrode, while the active material loss at the cathode has a greater impact on the equilibrium voltage curve. The kinetic degradation is mainly due to the slower charge transfer process and diffusion process at the cathode, which increases polarization impedance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.